If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-48x=0
a = 20; b = -48; c = 0;
Δ = b2-4ac
Δ = -482-4·20·0
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-48}{2*20}=\frac{0}{40} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+48}{2*20}=\frac{96}{40} =2+2/5 $
| -42=-10r+3r | | 12j-7j+3j+2j=20 | | 2q-3q=5 | | 96=8(u+10) | | -6(p+5)=-18 | | 7x-8-4=-2-3x | | 4(x+1)+x)=3(x-2)+2 | | 6u-u-5u+4u=20 | | 4(x+1)+x)=3(x-2)-2 | | 2n+(-3n)=n+8 | | 7(0.07m+20.70+0.30(20.70))=224.14 | | 6j+2j-3j=15 | | 2a+11=14a+59 | | N+2=11-2n | | 8n-10-12=-18 | | 4t-6(5)=-6 | | -50=10d–5d | | 5p+2p-2p+5p=10 | | -11+5=4u | | -10(t+8)=-90 | | 1/2=t+4/5 | | 9(-3x-10)=11 | | 5y+9y=42 | | 4+2x=4x-3 | | 6x^2+42+48=0 | | 8r+2r+r-r-5r=10 | | 199+5x=155+3x | | 25.75c=90.30 | | y12/2y=3/8 | | 3a–20=4 | | -x+57=3x+21 | | 7x+8x+9x=4x+3x12x+30x |